OpenCV-Python 哈里斯角检测 | 三十七

目标

在本章中,

  • 我们将了解”Harris Corner Detection”背后的概念。
  • 我们将看到以下函数:cv.cornerHarris(),cv.cornerSubPix()

理论

在上一章中,我们看到角是图像中各个方向上强度变化很大的区域。Chris HarrisMike Stephens在1988年的论文《组合式拐角和边缘检测器》中做了一次尝试找到这些拐角的尝试,所以现在将其称为哈里斯拐角检测器。他把这个简单的想法变成了数学形式。它基本上找到了(u,v)在所有方向上位移的强度差异。表示如下:

E(u,v) = \sum_{x,y} \underbrace{w(x,y)}_\text{window function} \, [\underbrace{I(x+u,y+v)}_\text{shifted intensity}-\underbrace{I(x,y)}_\text{intensity}]^2

窗口函数要么是一个矩形窗口,要么是高斯窗口,它在下面赋予了值。

我们必须最大化这个函数E(u,v)用于角检测。这意味着,我们必须最大化第二个项。将泰勒扩展应用于上述方程,并使用一些数学步骤(请参考任何你喜欢的标准文本书),我们得到最后的等式:

E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix}

其中

M = \sum_{x,y} w(x,y) \begin{bmatrix}I_x I_x & I_x I_y \\ I_x I_y & I_y I_y \end{bmatrix}

在此,I_xI_y分别是在x和y方向上的图像导数。(可以使用cv.Sobel()轻松找到)。

然后是主要部分。之后,他们创建了一个分数,基本上是一个等式,它将确定一个窗口是否可以包含一个角。

R = det(M) - k(trace(M))^2

其中

  • det(M)=\lambda_1\lambda_2
  • trace(M)=\lambda_1+\lambda_2
  • \lambda_1 and \lambda_2M 的特征值

因此,这些特征值的值决定了区域是拐角,边缘还是平坦。

  • |R|较小,这在\lambda_1\lambda_2较小时发生,该区域平坦。
  • R<0时(当\lambda_1 >>\lambda_2时发生,反之亦然),该区域为边。
  • R很大时,这发生在\lambda_1\lambda_2大且\lambda_1~\lambda_2时,该区域是角。

可以用如下图来表示:

因此,Harris Corner Detection的结果是具有这些分数的灰度图像。合适的阈值可为您提供图像的各个角落。我们将以一个简单的图像来完成它。

OpenCV中的哈里斯角检测

为此,OpenCV具有函数cv.cornerHarris()。其参数为:

  • img – 输入图像,应为灰度和float32类型。
  • blockSize – 是拐角检测考虑的邻域大小
  • ksize – 使用的Sobel导数的光圈参数。
  • k – 等式中的哈里斯检测器自由参数。

请参阅以下示例:

import numpy as np
import cv2 as cv
filename = 'chessboard.png'
img = cv.imread(filename)
gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
gray = np.float32(gray)
dst = cv.cornerHarris(gray,2,3,0.04)
#result用于标记角点,并不重要
dst = cv.dilate(dst,None)
#最佳值的阈值,它可能因图像而异。
img[dst>0.01*dst.max()]=[0,0,255]
cv.imshow('dst',img)
if cv.waitKey(0) & 0xff == 27:
    cv.destroyAllWindows()

以下三个结果:

SubPixel精度的转角

有时,你可能需要找到最精确的角落。OpenCV附带了一个函数cv.cornerSubPix(),它进一步细化了以亚像素精度检测到的角落。下面是一个例子。和往常一样,我们需要先找到哈里斯角。然后我们通过这些角的质心(可能在一个角上有一堆像素,我们取它们的质心)来细化它们。Harris角用红色像素标记,精制角用绿色像素标记。对于这个函数,我们必须定义何时停止迭代的条件。我们在特定的迭代次数或达到一定的精度后停止它,无论先发生什么。我们还需要定义它将搜索角落的邻居的大小。

import numpy as np
import cv2 as cv
filename = 'chessboard2.jpg'
img = cv.imread(filename)
gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
# 寻找哈里斯角
gray = np.float32(gray)
dst = cv.cornerHarris(gray,2,3,0.04)
dst = cv.dilate(dst,None)
ret, dst = cv.threshold(dst,0.01*dst.max(),255,0)
dst = np.uint8(dst)
# 寻找质心
ret, labels, stats, centroids = cv.connectedComponentsWithStats(dst)
# 定义停止和完善拐角的条件
criteria = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 100, 0.001)
corners = cv.cornerSubPix(gray,np.float32(centroids),(5,5),(-1,-1),criteria)
# 绘制
res = np.hstack((centroids,corners))
res = np.int0(res)
img[res[:,1],res[:,0]]=[0,0,255]
img[res[:,3],res[:,2]] = [0,255,0]
cv.imwrite('subpixel5.png',img)

以下是结果,其中一些重要位置显示在缩放窗口中以可视化:

磐创AI技术博客资源汇总站:http://docs.panchuang.net/
PyTorch官方中文教程站:http://pytorch.panchuang.net/
OpenCV中文官方文档: http://woshicver.com/

https://www.jianshu.com/p/3d4bcfc08c0c

「点点赞赏,手留余香」

    还没有人赞赏,快来当第一个赞赏的人吧!
TensorFlow
0 条回复 A 作者 M 管理员
    所有的伟大,都源于一个勇敢的开始!
欢迎您,新朋友,感谢参与互动!欢迎您 {{author}},您在本站有{{commentsCount}}条评论